Introduction

The laboratory for research in metal machining is located in building D2. The lab was donated by ISCAR Ltd. - a world leader in producer of unique and innovative cutting tools for metalworking, including turning, grooving, milling, hole-making, boring and threading tools. It is a multinational company with representation in 50 countries.

The laboratory provides the students the essential hands-on training with modern machines and equipment, complementing their theoretical studies, and serves for research by the academic staff.

Machining is a key technology for industries in aerospace, die and mold, automotive, defense etc.

Iscar Lab Ceremony July 2007

<u>Staff</u>

Dr. Michael regev supervises the lab on behalf of the mechanical engineering department. Email: <u>michaelr@braude.ac.il</u>

Mr. Hayyim salev is the Operator of conventional Basic machines Laboratory.

<u>Mr. Yitzchak yifrach</u> is head of design and production specialization and instructor of the course: "Machining processes cutting". Email: <u>Yifrach@braude.ac.il</u> For more information, please contact Mr. Yitzchak Yifrach.

Objectives

- 1. Training engineering students in the progressive machining process
- 2. Establishing exclusiveness of the college in the subject of progressive machining process
- 3. Fostering relevant research by academic staff
- 4. Fostering cooperative students' projects together with Iscar engineers, toward final projects
- 5. The lab supports teaching and research activities in machine design, machining processes and machine tools and other technical areas.
- 6. A receipt of garnets in the academic exploratory part of the laboratory
- 7. Providing services(commercial projects) to industries in the region

Policies: General, Safety

<u>General</u>

- No food or beverages are allowed in the laboratory area.
- Laboratory hours 8:00am-4:00pm.

<u>Safety</u>

- Most of the equipment in the lab is pre-configured in fixed stations. Under no circumstances you should try to move, troubleshoot, or open any equipment for any reason unless there is strong evidence that lack of your action may cause harm to a person or equipment.
- Eye protection is required for operation of all hand tools and powered, automated equipment, including CNC mills and lathe, and similar operations in the Lab.
- Long hair or loose clothing must be constrained to prevent getting caught in moving equipment.
- Watches, rings and other jewelry should be removed while operating all powered, automated equipment.
- Never attempt to operate any equipment without authorization and proper instruction. If you are uncertain about how a machine operates, ask the lab Coordinator for help.

Basic Machining Laboratory

The Basic Machining Laboratory consists of: manual lathe, vertical milling machine, drill press, grinding machine, and various cutting tools.

Mr. Hayyim salev is the Operator of conventional basic machines laboratory.

He manufactures partial machinery for lecturers that deal in research of different subjects in the mechanical engineering department.

Turning machine

Turning machine

Basic Machining Laboratory

Vertical milling machine

Drill press

Basic Machining Laboratory

Horizontal spindle surface grinder

Computer Numerical Control (CNC) Machining

Introduction

CNC Machining, or Computer Numerically Controlled Machining, is a fast, high-tech method of creating complex parts with very low tolerances in a short period of time.

General Information

The Computer Numerical Control, CNC, Machining process produces 3D objects by removing material. Automated milling machines are pre-programmed to cut away material according to a specific path.

Several cuts are usually necessary; first a rough cut using a large-radius bit (no tight inside corners) and then final cuts to exact dimensions. The processes of tool selection and changing, and cooling of the work piece are all automated and handled by the milling machine.

The advantages of using a CNC mill include

- Variety of materials
- Recyclables
- Capacity to produce high-quality metal molds
- Accuracy the CMM (Coordinate Measuring Machine) raises the accuracy of the tool movement (to within ± 0.01mm).

CNC mill uses G and M codes to describe the cutting and spinning motions of the tools as well as their speed.

- G codes specify motions while M codes specify machine commands.
- G code can be written by hand or generated by ProEngineer or Catia.

Computer Numerical Control (CNC) Machining

High precision CNC lathe turning Takisawa TC-4 CNC 2 Axis Turning Center

Hitachi Seiki VA 65 CNC Vertical Machining Center 3 axis

Computer Numerical Control (CNC) Machining

The Computer Aided Design (CAD) covers theoretical and practical concepts including:

- Part modeling
- Assembly modeling
- Simulation model and FEM

To use the CNC Mill, a user must first create a Computer Aided Design (CAD) file using any of several CAD software packages available on campus. These include Catia, SolidWorks, and ProEngineer.

The geometric model that get accepted from the sketch with Catia software

Computer Numerical Control (CNC) Machining

After a model is created, tool selection and pathing must be programmed; the user decides where the cutting tool will go and when, and which tool will be mounted as it does so. This process can be programmed in Catia & ProEngineer here on campus or with other software packages. Having a part CNC milled at the CMU Mechanical Engineering machine shop is considerably simpler.

What materials can be used?

Materials that can be used include all of the following: Aluminum, Carbon Steel, Stainless Steel, Titanium, Magnesium, Brass, Copper, Special Alloys, Plastic, woods.

How much does it cost?

- 1. Cost depends on material, tolerance, and size.
- 2. Cost depends on the choice of material because certain stock materials are more expensive than others. Often higher grades of stock take more time to cut and are therefore more expensive. Harder materials cause more wear on the mill.
- 3. Cost depends on tolerance. Tolerances using a CNC milling machine can be as tight as 1 thousandth of an inch. Production tolerances are sometimes acceptable because human error and machine deviances are inevitable. The tighter the tolerances needed, the higher the cost.
- 4. Cost depends on size.
 - 4.1. Larger pieces lead to higher fixed cost (larger machine)
 - 4.2. Depending on complexity, parts take longer to machine and therefore cost more in terms of variable costs, including labor, excess material, and wear down.

Computer Numerical Control (CNC) Machining

What are some limitations?

CNC Milling is a very useful procedure. There are, however, a few limitations on what can be produced by the mill, and a few factors which must be considered to make an economical design.

- 1. The CNC mill uses rotary bits, so when milling inside corners a finite radius is unavoidable. Outside corners can be made quite sharp if necessary, but some inside corners can have as a minimum the radius of the cutting tool.
- The workpiece must be solidly mounted to the milling table by a bracket piece, bolt holes, or a clamp. This should be taken into consideration when designing a part to be CNC milled. Of course the part can be mounted by a flange which is manually removed after machining.
- 3. Tool wear
 - 3.1. Tool bits wear down and deteriorate with more use.
 - 3.2. Especially true if material being cut is as hard as the drill bit used (metal cutting metal)
- 4. Machine code
 - 4.1. Must have NC file in the end to use the CNC milling machine.
 - 4.2. CAD must be exported to IGS format (ProE) or NC code must be written (can become very tedious) for the process to work.
- 5. Size limitation
 - 5.1. The product being made must "fit" into the CNC machining station.

G and M Codes

G-Code serves for describing the tool path by means of coordinates, while M-codes are used for describing machine commands, such as tool types, speeds and starting the ending the program. Both are necessary to run the program.

Computer Numerical Control (CNC) Machining

Short introduction to G codes to know

G00	positioning (rapid traverse)	G54	work coordinate system 1 select
G01	linear interpolation (feed)	G55	work coordinate system 2 select
G02	circular interpolation CW	G56	work coordinate system 3 select
G03	circular interpolation CCW	G57	work coordinate system 4 select
G04	dwell	G58	work coordinate system 5 select
G07	imaginary axis designation	G59	work coordinate system 6 select
G09	exact stop check	G60	single direction positioning
G10	offset value setting	G61	exact stop check mode
G17	XY plane selection	G64	cutting mode
G18	ZX plane selection	G65	custom macro simple call
G19	YZ plane selection	G66	custom macro modal call
G20	input in inch	G67	custom macro modal call cancel
G21	input in mm	G68	coordinate system rotation ON
G22	stored stroke limit ON	G69	coordinate system rotation OFF
G23	stored stroke limit OFF	G73	peck drilling cycle
G27	reference point return check	G74	counter tapping cycle
G28	return to reference point	G76	fine boring
G29	return from reference point	G80	canned cycle cancel
G30 point	return to 2nd, 3rd & 4th ref.	G81	drilling cycle, spot boring
G31	skip cutting	G82	drilling cycle, counter boring
G33	thread cutting	G83	peck drilling cycle
G40	cutter compensation cancel	G84	tapping cycle
G41	cutter compensation left	G85 ,	G86 boring cycle
G42	cutter compensation right	G87	back boring cycle
G43 direc	tool length compensation + tion	G88 ,	G89 boring cycle
G44 direc	tool length compensation - tion	G90	absolute programming
G49	tool length compensation cancel	G91	incremental programming
G45	tool offset increase	G92 point	programming of absolute zero
G46	tool offset decrease	G94	per minute feed
G47	tool offset double increase	G95	per revolution feed
G48	tool offset double decrease	G96	constant surface speed control
G50	scaling OFF	G97 cance	constant surface speed control
G51	scaling ON	G98 cycle	return to initial point in canned
G52	local coordinate system setting	G99	return to R point in canned cycle

Computer Numerical Control (CNC) Machining

Short introduction to M codes to know

M00	program stop
M01	optional stop
M02	end of program (no rewind)
M03	spindle CW
M04	spindle CCW
M05	spindle stop
M06	tool change
M07	mist coolant ON
M08	flood coolant ON
M09	flood coolant OFF
M19	spindle orientation ON

M21 tool magazine right
M22 tool magazine left
M23 tool magazine up
M24 tool magazine down
M25 tool clamp
M26 tool unclamp
M27 clutch neutral ON
M28 clutch neutral OFF
M30 end program (rewind stop)
M98 call sub-program
M99 end sub-program

Computer Numerical Control (CNC) Machining

Example to the process of computerized production with Catia software

Example to part that required to manufacture

Stage of number 1- Building of suitable raw material to the problem

Computer Numerical Control (CNC) Machining

Stage of number 2 - Use the NC Catia software (CAM)

Computer Numerical Control (CNC) Machining

<u>Stage of number 3 - preliminary definitions like:</u>

- 1. Type of raw materials
- 2. System of axes
- 3. Type of machine & so on

Pr	Pr Part Operation			<u> </u>
%	Name:	Part Operation.1		
Ĉ	Comments:	No Description		
Pt 100 - 4-	12	No machine selected		
÷	<u>×</u>	poeradic reference machining axis for Part Operatio		To characterin
Ri	RI Product1			
	Geometr	y Position Simulation Option		
//Product1/Part1/Part1/PartBody				
	/Pro	oduct1/stoke/stoke/PartBody		
	P No	fixture selected (for simulation only)		
		safety plane selected		
	No No	traverse box plane selected		
	Z No	transition plane selected		
	No.	rotary plane selected		
				the reference machines avis for Part Or
			Cancel	
			Cancer	

Computer Numerical Control (CNC) Machining

Stage of number 4- Building the process production

4.1 - We start with choice a function from within menu

Examples of some optional functions

lcon	Name	Definition
₫	Pocketing Operation	It machines open or closed pocket with or without inner domains.
	Facing Operation	It is a plane milling operation used for cutting constant offset of material on a planer area.
₫	Profile Contouring Operation	It consists in cutting material along a hard boundary in same or zig-zag direction.
₫	Curve Following Operation	It machines a part by following a curve with the tool tip.
2	Groove milling Operation	It allows you to machine groove area with a T-slot tool.
, X	Point To Point Operation	It consists in moving the tool from a selected point to another selected point at a given machining feedrate.
	Prismatic Roughing Operation	It is a operation used to rough machine the drafted or multiple bottom pockets.
۲	Prismatic Machining Area	It allows you to define an area from your geometry and record it. Further this area is used for pocketing or profile contouring.
6	Prismatic Rework Area	It is the area which is remained unmachined after performing the previous operation.

Computer Numerical Control (CNC) Machining

- After all the relevant definitions for all function, get accepted the full program
- You have to run a simulation to the testing of the results

The part that get accepted in the end of the simulation

